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Executive summary 

Automatic speech recognition (ASR) techniques are crucial in improving safety for Air Traffic 

Control (ATC) in terminal environments. In these environments, ATC controllers need to 

communicate with multiple pilots simultaneously, and any miscommunication or 

misunderstanding could have severe consequences. ASR techniques allow for more efficient and 

accurate transcription of verbal communications, reducing the likelihood of errors and 

misunderstandings. This can ultimately improve safety by ensuring that all parties have a clear 

understanding of the information being exchanged and can respond appropriately. 

This report starts by discussing the MITRE Corporation's previous research on ASR, which 

focused on improving voice recognition for ATC systems. It then moves on to detail the 

evolution of ASR technologies to more modern machine learning approaches. 

The development of ASR technologies covers key milestones, such as the introduction of Hidden 

Markov Models (HMMs) and Deep Neural Networks (DNNs), which have led to significant 

improvements in ASR accuracy, and ultimately lead to end-to-end techniques. 

Finally, the report dives into the latest advancements in ASR techniques, specifically the use of 

transformer-based models. These models have achieved state-of-the-art results on a range of 

ASR benchmarks and have been shown to outperform traditional ASR approaches. 
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1 Introduction 

Improving speech recognition in pilot Air Traffic Control (ATC) communication can have a 

significant impact on safety in aviation. Accurate and timely communication between pilots and 

ATC is critical for safe and efficient air traffic management. Miscommunication or 

misunderstandings between pilots and ATC can result in incidents, accidents, and even fatalities. 

Improving the accuracy and efficiency of speech recognition in ATC can ultimately enhance 

safety in aviation (Geacǎr, 2010). The application of automatic speech recognition (ASR) in 

ATC has been explored by various research teams and demonstrated using different techniques 

(Helmke, Ohneiser, Muhlhausen, & Wies, 2016; Lin, et al., 2019; Lin, Guo, Zhang, Chen, & 

Yang, 2021)  

This report explores the model components and their evolution that make up ASR. ASR 

techniques have been studied since the 1970s (Reddy, 1976) and are still today the interest of 

many research teams (Nassif, Shahin, Attili, Azzeh, & Shaalan, 2019). Specifically, this report 

examines the evolution of ASR methods, including Hidden Markov Models (HMM) and 

Gaussian Mixture Models (GMM), and the modifications made to the HMM pipeline that 

ultimately led to the emergence of end-to-end models. 

The report also showcases the potential of ASR technology in enhancing safety and efficiency 

within the National Airspace System (NAS). Focusing on the collaborative efforts of the MITRE 

Corporation's Center for Advanced Aviation System Development (CAASD) and the Federal 

Aviation Administration (FAA) in implementing advanced speech recognition technologies, such 

as the Flight Analysis System (FAS) and the Closed Runway Operation Prevention Device 

(CROPD), are highlighted to analyze the NAS and accurately identify potential hazards. The 

critical role that ASR technology plays in ensuring the highest level of safety for all airspace 

users is also discussed. 

Moreover, the report highlights the advancements in deep learning (DL) techniques that have 

resulted in significant improvements in ASR accuracy and performance, including the emergence 

of Transformer models as a powerful alternative to RNN for ASR tasks. The report explores how 

these models leverage self-attention mechanisms to capture long-range dependencies and 

complex patterns in speech data, enabling more accurate and efficient recognition of speech. 

Furthermore, the report examines how Transformer models can be fine-tuned and adapted to 

various tasks, languages, and domains with relative ease, further enhancing the capabilities and 

performance of ASR models. 
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2 Past FAA and MITRE reports 

The MITRE Corporation's CAASD has been working on the development of a state-of-the-art 

FAS as part of their Product Based Work Plan (PBWP) (McGuire & Feerrar, 2014). The FAS is 

designed to seamlessly merge and amalgamate large datasets from various sources such as the 

National Operations Portal (NOP), Airport Surface Detection Equipment Model X (ASDE-X), 

En Route Traffic Management System (ETMS), and Automatic Dependent Surveillance-

Broadcast (ADS-B) (McGuire & Feerrar, 2014) . The system incorporates aircraft trajectory 

information with weather patterns, airspace procedures, and Notices to Airmen (NOTAMs) to 

create a comprehensive and exhaustive analysis (McGuire & Feerrar, 2014) . In addition to these 

features, the FAS also harnesses the power of cutting-edge ASR technology to integrate pilot-

controller voice communications and undertake large-scale analyses. In this work, an extensive 

voice processing pipeline is outlined, with ASR being the first component. A significant part of 

the report details the context incorporation and semantic extraction which is required to merge 

the voice data with other data fields (McGuire & Feerrar, 2014) Later applications of the 

methodologies will show that ASR is not the only point of failure that impacts the overall system 

performance. 

A major research focus of the MITRE CAASD team was the CROPD, which led to the 

identification of an extensive suite of applications aimed at early detection of surface safety 

events (Chen, et al., 2016). The research aimed to enhance and amplify the already robust speech 

and language processing capabilities, with two main technical objectives: first, identifying other 

potential applications for detecting surface safety events, and second, bolstering speech 

recognition performance on Tower controller audio (Chen, et al., 2016). 

The use of ASR technology has demonstrated unparalleled potential for analyzing the NAS 

(Kopald H. , 2017). The research showed a 99% classification agreement between the algorithm 

and human-transcribed text in identifying missed approach initiators, thereby establishing the 

feasibility and efficacy of utilizing ASR for this critical task (Kopald H. , 2017). Furthermore, 

key phrases were recognized with remarkable 96% accuracy, and using simple logic, the initiator 

could be identified an impressive 90% of the time (Kopald H. , 2017). 

The FAA gave the responsibility of researching speech recognition in the NAS to MITRE 

CAASD, with a focus on runway safety and investigating the potential benefits of speech 

recognition technology across the NAS (Kopald & Chen, 2019). The researchers developed 

advanced concepts for detecting erroneous surface operations in real-time, with low false 

positive rates but concerning false negative rates (Kopald & Chen, 2019). 
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In accordance with the MITRE CAASD's investigation into automated speech recognition for the 

FAA to support the NAS (Kopald, Chong, & Shepley, 2018), research has been conducted into 

the recognition of voice and the improvement of its performance in detecting safe clearances for 

closed runways. The study was aimed at providing a deeper understanding of the technology and 

its potential applications, with the FAA seeking a more comprehensive range of applications for 

speech recognition technology. This research is a part of a larger FAA portfolio for NAS safety, 

which has contributed to a more nuanced comprehension of the technology and its use cases, 

informing future FAA decisions (Kopald, Chong, & Shepley, 2018). 

The MITRE/CAASD designed the Late or Missing Landing Clearance Detection and 

Notification System prototype as part of an FAA initiative to enhance aviation safety (Tarakan, 

2012). The prototype utilizes automatic speech recognition, data fusion, and other technologies, 

and was hosted and demonstrated in the CAASD IDEA Lab (Tarakan, 2012). The system 

performed excellently in a simulated environment representing Hartsfield-Jackson Atlanta 

International Airport and is now ready for field customization and site-specific enhancements 

(Tarakan, 2012). ASR performance depends on audio fidelity, model conformity to realistic field 

characteristics, and additional airport/tower-specific adaptations necessary for optimization 

(Tarakan, 2012). 

In the context of airspace security operations, ideal transcription conditions include low noise, 

single speaker, known speaker, and structured vocabulary. High-quality input is crucial for 

obtaining accurate transcripts, and investigation into microphone options such as noise-canceling 

microphones is recommended (Henriques, 2009). Storing transcribed text and lower quality 

recordings can save space without sacrificing audible sound quality (Henriques, 2009). The 

currently used codec, GSM 06.10, leads to a high Word-Error Rate; it is recommended to use the 

G.711 codec for better speech recognition accuracy  (Henriques, 2009). To further increase 

accuracy, it is advised to record the DEN HQ separately, separate participants into individual 

tracks, and apply speech-transcription technology individually to each track (Henriques, 2009). 

The MITRE CAASD's investigation highlights the potential and significance of speech 

recognition technology as part as a processing pipeline including semantic parsing in improving 

safety and efficacy within the National Airspace System. By assimilating ASR into various 

applications, such as FAS and CROPD, and by continuously refining the technology, the FAA 

can more effectively manage and monitor aviation operations while guaranteeing a high level of 

safety for all airspace users. Additional MITRE reports that were investigated in regard to 

speech-to-text are summarized with pros and cons in Appendix A.  
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3 Automatic Speech Recognition methods 

In a traditional ASR system, language models and acoustic models are two key components that 

work together to transcribe spoken words into text. The typical pipeline is shown in Figure 1 

(Renkens, 2017). 

 
Figure 1. Traditional automatic speech recognition pipeline . 

 

Acoustic models are responsible for mapping acoustic features extracted from the speech signal 

to probabilities of speech sounds, which are often represented as phonemes or sub-phonetic 

units. Acoustic models are typically trained using a large dataset of speech recordings and their 

corresponding transcriptions, using techniques such as Hidden Markov Models (HMMs) or Deep 

Neural Networks (DNNs). 

Language models, on the other hand, are responsible for assigning probabilities to sequences of 

words. These models are trained on large text dataset and estimate the likelihood of observing a 

particular sequence of words based on the statistical patterns they have learned from the training 

data. 

In an ASR system, the output of the acoustic model and the language model are combined. 

Specifically, the language model assigns probabilities to possible word sequences based on the 

statistical patterns of the training data, and the acoustic model assigns probabilities to possible 

speech sound sequences based on the characteristics of the acoustic features extracted from the 

speech signal. These probabilities are then combined to generate a transcription that is most 

likely given the observed speech signal. 

The language model and acoustic model work together to improve the accuracy of the 

transcription. By considering the context of the spoken words, the language model can help to 

distinguish words that sound similar, while the acoustic model can help differentiate words that 

are phonetically similar.  
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In the literature, there exist many different ASR classifiers such as Support Vector Machines 

(SVM), Artificial Neural Networks (ANN) or k-NN classifiers. Yet, traditionally, ASR models 

have been leveraging Hidden Markov Gaussian Mixture Models (HMM-GMM) relying on 

probabilistic methods to compute the likelihood of a text string corresponding to an input sound 

wave (El Ayadi, Kamel, & Karray, 2011). This ASR technique has been around for decades and 

evolved as computational capabilities improved over the years. Progressively, DL models 

replaced the pipeline elements of HMM-GMM models and converged into end-to-end models.  

3.1 Hidden Markov model and Gaussian Mixture models 

The HMM aims to extract speech data from a noisy environment. It uses densities of probability 

assembled by a mixture of Gaussian functions. In the initial stage of the training process, a model 

is computed for each user and saved in the database. Later, when the user's spectral features are 

generated, the system searches the database to identify the model that most accurately matches 

these features. (Rodríguez, García-Crespo, & García, 1997). 

Once the training data has been collected, the HMM-GMM model is built. The model consists of 

a set of HMMs, each corresponding to a different speech sound, and a set of GMMs, which 

model the probability distribution of the acoustic features associated with each speech sound. To 

transcribe new speech, the HMM-GMM model is used to decode the acoustic features extracted 

from the speech signal. The model calculates the probability of each speech sound given the 

acoustic features, and the most likely sequence of speech sounds is selected as the transcription. 

(Povey, 2004). 

To perform automatic speech recognition, the conventional approach requires establishing a 

connection between the speech signal and the digital model during the front-end speech 

preprocessing stage. The combination of sampled speech signals is then used to predict the signal 

using the linear prediction analysis method. However, due to the complexities involved in 

extracting speech information, adapting the preprocessing models in traditional speech 

recognition to different scenarios characterized by diverse pronunciations of individuals speaking 

different languages, gender, and age becomes a challenging task (Renkens, 2017). 

3.2 Modifications of the HMM pipeline 

The HMM pipeline can be improved depending on the application, such as boosting by lattice 

composition to enhance the prediction accuracy of the contextual information such as a call sign 

for a ATC and pilot communication (Kocour, et al., 2021). 
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DL methods have significantly improved the accuracy of ASR systems by learning and modeling 

complex relationships between acoustic features and spoken language, allowing speech 

recognition systems to increase recognition rates substantially. One key advantage of DL 

methods in ASR is their ability to learn more robust representations of speech data, which allows 

them to capture complex patterns and variability in speech signals. By using large-scale datasets 

and complex neural architectures, DL models can learn to recognize more subtle and abstract 

speech features, such as tone, emphasis, and emotion. 

During the initial stages of integrating DL with automatic speech recognition, researchers 

incorporated DL models into the framework of HMM/GMM. By using DL models to optimize 

the data for automatic speech recognition, they aimed to improve the performance of the system. 

Adding neural networks to HMM/GMM models has been shown to significantly improve the 

accuracy of ASR systems. One approach that has proven particularly effective is the tandem 

approach, which combines a neural network-based acoustic model with a traditional HMM-based 

language model. 

In the Tandem approach, the neural network-based acoustic model is used to extract high-level 

features from the speech signal, which are then used to train a traditional HMM-based language 

model. The resulting system can then be used to recognize speech with higher accuracy than 

traditional HMM/GMM models alone.  (Vinalys & Ravuri, 2011). 

Researchers have experimented with various approaches to incorporate DL models into existing 

components of ASR systems, with the goal of improving accuracy and robustness. One such 

approach is the DNN-HMM hybrid approach  (Dahl, Member, Deng, & Acero, 2011), in which 

DL models are used to replace the GMM structure in the HMM. This approach allows for the use 

of more powerful neural network-based models to capture complex patterns and relationships in 

the speech data. These approaches have shown promising results and have paved the way for the 

development of more sophisticated and effective ASR systems that can better handle the 

challenges of real-world speech recognition applications. 

Later, researchers tried to replace core elements of the traditional pipeline such as the language 

model or the acoustic model with DL models, such as the replacement of the acoustic model with 

a RNN architecture  (Maas, et al., 2012). HMMs have been the gold standard in ASR for years, 

specifically when applied in an ATC environment (Ferreiros, et al., 2012). While HMMs have 

been successful in ATC, recent advances in DL, specifically end-to-end models such as 

Transformers, have shown promise in improving speech recognition accuracy, and are being 

explored for use in ATC. The trend over the years was to progressively introduce DL models in 
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the prediction pipeline, to ultimately converge to one DL architecture encapsulating the entire 

pipeline, End-to-End models. 

3.3 End-to-end models 

One issue with hybrid systems is that several intermediate models (acoustic model, language 

model, lexicon) either need expert linguistic knowledge or be trained and designed separately. In 

the last few years, there has been an increasing focus on the development and adoption of end-to-

end systems in ASR. 

End-to-end models are considered better for ASR because they offer a simpler, more efficient, 

and more accurate approach to speech recognition compared to traditional ASR systems. End-to-

end models are neural network-based models that can take raw speech signal as input and output 

the corresponding transcript directly, without the need for separate components for feature 

extraction, acoustic modeling, and language modeling. 

By eliminating the need for separate components, end-to-end models reduce the complexity of 

ASR systems, resulting in faster training, reduced inference times, and lower computational 

requirements. Additionally, end-to-end models can learn more effectively from data, leading to 

better accuracy and robustness, especially in scenarios where the speech data is highly variable 

and noisy. 

Furthermore, end-to-end models are more flexible and adaptable than traditional ASR systems, 

allowing for easier customization to specific tasks or domains, and when benchmarked with a 

HMM architecture, end-to-end models showed better results (Wang, Wang, & Lw, 2019). They 

can be trained on small amounts of data and can adapt to new speakers or languages with 

minimal additional training. Some studies have reported promising results using end-to-end ASR 

models in ATC settings, demonstrating that these models can achieve high levels of accuracy 

and can potentially outperform traditional ASR systems (Lin, Yang, Li, et al., 2021). While 

several end-to-end models exist, such as the combination of Convolutional Neural Networks 

(CNN) and RNN  (Lin, Yang, Guo, & Fan, 2021; Fan, Guo, Lin, Yang, & Zhang, 2021; Li, et al., 

2019), the most common ones are listed in the following sections.  

3.3.1 Connectionist temporal classification (CTC)  

CTC is a popular approach for end-to-end ASR. It uses a RNN to map input speech features 

directly to output sequences of characters or words. CTC allows for variable-length input and 

output sequences, making it well-suited for ASR  (Chan, Jaitly, Le, & Vinyals, 2016-May). 
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3.3.2 Attention-based models 

Attention-based models are another popular approach for end-to-end ASR. They use an encoder-

decoder framework, where the encoder maps input speech features to a fixed-length 

representation and the decoder generates the output sequence. Attention mechanisms are used to 

allow the decoder to focus on different parts of the input representation at each decoding step, 

improving the accuracy of the system. 

3.3.3 Recurrent neural networks with transducer (RNN-T)  

RNN-T combines an encoder-decoder framework with a transducer to directly map variable-

length input speech features to variable-length output sequences of characters or words. Unlike 

other end-to-end models, RNN-T allows for joint training of the acoustic and language models, 

enabling the system to adapt to the specific characteristics of the speaker and the language. 

Additionally, RNN-T can handle online recognition, where the system produces output in real-

time as the speech is being input and has been proven to overperform CTC methodologies in 

speech transcription tasks  (Prabhavalkar, et al., 2017). 

3.4 RNN-T models  

3.4.1 Architecture 

The RNN-T model is composed of three main components: an encoder network, a prediction 

network, and a joint network as depicted on Figure 2 (Kanishka Rao, Hasim Sak, & Rohit 

Prabhavalkar, 2017). The encoder network is responsible for mapping the input acoustic frames 

into a higher-level representation, which is typically a fixed-length vector that captures the 

relevant information in the input speech signal. This representation is then used by the prediction 

network to generate an output sequence, which is typically a sequence of characters or words. 
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Figure 2. RNN-T architecture . 

 

The prediction network corresponds to the decoder network and is conditioned on the history of 

previous predictions. It takes as input the output from the previous time step and generates the 

output for the current time step. The joint network combines the information from the encoder 

and prediction networks to generate the final output sequence. 

3.4.2 Model training: 

To train a RNN-T model, various stages are involved. First, the encoder network is pre-trained as 

a hierarchical-CTC network that can simultaneously predict phonemes, graphemes, and word 

pieces at different LSTM layers, such as 5, 10, and 12 layers. In addition, a time convolutional 

layer is used to reduce the encoder time sequence length by a factor of three. 

The decoder network, on the other hand, is trained as an LSTM language model that can predict 

word pieces and is optimized with a cross-entropy loss. After training the encoder and decoder 

networks separately, the weights of the two pre-trained models are initialized and then combined 

to form the complete RNN-T network. The dashed lines in the diagram indicate the transfer of 

weights from the pre-trained models to the RNN-T network. 

Finally, the complete RNN-T network is trained using the RNN-T loss function. The RNN-T loss 

is a joint optimization objective that optimizes both the acoustic and language models 

simultaneously (Kanishka Rao, Hasim Sak, & Rohit Prabhavalkar, 2017). 
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3.5 Deep speech 

The Deep Speech model focuses on improving the accuracy and efficiency of speech recognition 

systems using DL techniques  (Hannun, et al., 2014). The authors addressed some of the major 

challenges in traditional speech recognition systems, such as handling noisy and variable speech 

input, recognizing different accents and dialects, and scaling the model to handle large amounts 

of data. The team's contributions have significantly improved the accuracy and accessibility of 

speech recognition technology, opening new possibilities for human-computer interaction and 

communication. 

The Deep Speech model uses a variant of RNN called a Bidirectional Recurrent Neural Network 

(BRNN)  (Schusater & Paliwal, 1997), which combines information from both forward and 

backward sequences of the input speech signal. This allows the model to capture contextual 

information from both past and future frames of the speech signal, improving its ability to 

recognize speech accurately. We report an illustration of the architecture in Figure 3. Authors 

also introduced several techniques to improve the training process to enable the model to learn 

more efficiently from a diverse range of speech data.  

When applied to an ATC environment, Deep Speech showed promising results (Kleinert, et al.). 

In addition of using the word error rate as an accuracy metric, this paper also measures the 

callsign recognition rate. This highlights the importance of semantic extraction for applications 

of ASR in an ATC environment. 

 

 

  



 

 11  

3.5.1 Architecture & Computational efficiency 

3.5.1.1 Architecture 

Figure 3 (Hannun, et al., 2014) shows the model architecture which consists of five layers of 

hidden units.  

 

 
Figure 3. Deep Speech architecture. 

 

The first three layers are non-recurrent layers. The hidden units are computed as follows. 

Non-recurrent layer equations: Hidden unit computation: 

 

ℎ𝑡
(𝑙)

= 𝑔(𝑊(𝑙)ℎ𝑡
(𝑙−1)

+ 𝑏(𝑙)) 

 

(1) 

where 𝑔(𝑧) =   min{max{0, 𝑧} , 20} is the clipped rectified-linear (ReLu) activation function, 

𝑡 represents the time step, 𝑊(𝑙), 𝑏(𝑙) are the weight matrix and bias parameters for layer 𝑙 and 

ℎ𝑡
(𝑙)

 is the unit in the layer 𝑙 at the time step 𝑡 . 
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The fourth layer is a bi-directional recurrent layer composed of two sets of hidden units: 

1. The first is built with forward recurrence: 

 

Bi-directional recurrent layer equations: Exploring forward recurrence. 

 

ℎ𝑡
(𝑓)

=  𝑔 (𝑊(4)ℎ𝑡
(3)

+ 𝑊𝑟
(𝑓)

ℎ𝑡−1
(𝑓)

+ 𝑏(4))  

 

(2) 

where ℎ𝑡
(𝑓)

 is the unit in the forward layer 𝑓 at time step 𝑡 . 

 

 

2. The second is built with backward recurrence: 

Bi-directional recurrent layer equations: Exploring backward recurrence: 

 

ℎ𝑡
(𝑏)

=  𝑔(𝑊(4)ℎ𝑡
(3)

+ 𝑊𝑟
(𝑏)

ℎ𝑡+1
(𝑏)

+ 𝑏(4)) 

 

(3) 

where ℎ𝑡
(𝑏)

 is the unit in the backward layer 𝑏 at time step 𝑡 . 

 

 

The fifth layer takes both the outputs of the forward and backward units as inputs: 

Fifth layer equations: Combined outputs: 

 

ℎ𝑡
(5)

=  𝑔(𝑊(5)ℎ𝑡
(4)

+ 𝑏(5)) 

 

(4) 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑡
(4)

= ℎ𝑡
(𝑓)

+ ℎ𝑡
(𝑏)

 

 

 

The output layer is a standard 𝑠𝑜𝑓𝑡 max(⋅) function that yields the predicted character 

probabilities for each time slice 𝑡 and character 𝑘 in the alphabet: 
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Softmax output layer equation: Character probabilities: 

 

ℎ𝑡,𝑘
(6)

≡ 𝑃(𝑐𝑡 = 𝑘|𝑥) =
exp(𝑊𝑘

(6)
ℎ𝑡

(5)
+ 𝑏𝑘

(6)
)

∑ exp (𝑊𝑗
(6)

ℎ𝑡
(5)

+ 𝑏𝑗
(6)

)𝑗

 

 

(5) 

where 𝑊𝑘
(6)

 and 𝑏𝑘
(6)

denote the 𝑘′𝑡ℎ column of the weight matrix and 𝑘′𝑡ℎ bias, respectively, 

and 𝑐𝑡is the predicted character at the time step 𝑡 . 

 

The CTC loss is used to measure the error in prediction during training, and Nesterov's 

Accelerated Gradient method is used to compute the gradient with respect to all the model 

parameters via back-propagation.  

3.5.1.2 Computational efficiency 

One of this research's contributions is implementing an effective training process, which has 

resulted in an accelerated performance of NNs. This methodology entails utilizing specialized 

networks that leverage high-speed computer operations and training them using multiple 

graphics processing units (GPUs) in parallel. The data and neural network model were 

partitioned into smaller subsets, which were then processed simultaneously on different GPUs. 

To speed up the procedure even more, instances of similar length were grouped together. 

This method allowed the authors to process 2300 hours of data in just a few hours. 

3.5.2 Dataset description 

Table 1 shows the data used to train and evaluate Deep Speech model which is a collection of 

speech recordings from a variety of sources, including: 

 WSJ (Wall Street Journal) is a corpus of reading speech recordings from the Wall Street 

Journal. It consists of about 80 hours of speech from 280 speakers and is commonly used 

for training and testing speech recognition models. 

 SWITCHBOARD is a corpus of conversational speech recordings collected over the 

telephone network. It consists of about 2,400 two-sided conversations between two 

strangers and is commonly used for training and evaluating speech recognition models. 

 FISHER is another corpus of conversational speech recordings, collected in a similar way 

to SWITCHBOARD. It consists of about 2,000 conversations between native speakers of 

American English and non-native speakers and is often used for evaluating speech 

recognition models in challenging conditions. 
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 Baidu is a dataset collected by Baidu Research, consisting of many spoken sentences in 

Mandarin Chinese. It contains both clean and noisy recordings and is often used for 

training and evaluating speech recognition models in Mandarin Chinese. 

 

Table 1. The used benchmark datasets 

Dataset Type Hours Speakersi 

WSJ read 80 280 

Switchboard conversational 300 4000 

Fisher conversational 2000 23000 

Baidu read 5000 9600 
 

 

The authors' objective is to enhance the functionality of existing systems that fail to perform 

efficiently in noisy surroundings. However, acquiring labeled data from such environments is 

challenging. To tackle this issue, they devised an alternative approach for generating data, which 

involved combining 100 noisy and 100 noise-free utterances from 10 speakers with SNR 

between 2 and 6dB. This data was created to enhance performance in noisy settings. 

The Lombard effect (List, 1993) occurs when speakers change their voice's intonation or pitch to 

overcome background noise. Recorded speech datasets, which are frequently gathered in quiet 

environments, do not, however, capture this effect. To overcome this limitation the authors 

played loud background noise through the headphones while the person was speaking, thus 

ensuring that the Lombard effect would be present in the recordings. 

3.5.3 Experiments and results 

3.5.3.1  First experiment: Conversational speech: Switchboard Hub5’00 (full) 

The authors tested their system on a difficult dataset, Hub5'00, which has both easy (SWB) and 

hard (CH) instances and reported the word error rate for the full set. They trained their model on 

a 300-hour dataset of Switchboard speech on a larger 2300-hour dataset combining Switchboard 

and Fisher speech. They computed spectrograms of 80 linearly spaced log filter banks and 

applied speaker adaptation by normalizing the spectral features for each speaker. They used a 4-

gram language model with a 30,000-word vocabulary for decoding. The Deep Speech SWB 

model has 5 hidden layers with 2048 neurons, trained only on the 300-hour Switchboard dataset. 

The Deep Speech SWB + FSH model is an ensemble of 4 RNNs, each with 5 hidden layers of 
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2304 neurons, trained on the full 2300-hour dataset. Both models were trained on inputs of +/- 9 

frames of context. 

In Table 2, we can see a comparison of the proposed models with other of the state-of-the-art 

models. They use word error rate (WER) as the evaluation metric. Vesel et al. (2013) used a 

hybrid DNN-HMM system with a sequence-based loss function and had the best previously 

published result on the Hub5’00 test set. However, when they trained their Deep Speech system 

on the combined 2300 hours of data, it improved the performance by 2.4% absolute WER. DNN-

HMM FSH, developed by Maas et al. (2017), achieved a 19.9% WER when trained on the Fisher 

2000-hour corpus using Kaldi, another open-source ASR software. This result shows that the 

proposed Deep Speech system is competitive with the best existing ASR systems when trained 

on a similar amount of data. 

 

Table 2. Published error rates (%WER) on Switchboard dataset splits. 

Model SWB CH Full 

Vesely et al. (GMM-HMM BMMI)  (Vessel, Ghoshal, Burget, & 

Povey, 2013) 

18.6 33.0 25.8 

Vesely et al. (DNN-HMM sMBR)  (Vessel, Ghoshal, Burget, & 

Povey, 2013) 

12.6 24.1 18.4 

Maas et al. (DNN-HMM SWB) (Maas, et al., 2017) 14.6 26.3 20.5 

Maas et al. (DNN-HMM FSH)  (Maas, et al., 2017) 16.0 23.7 19.9 

Seide et al. (CD-DNN)  (Seide, Li, Chen, & Yu, 2011) 16.1 n/a n/a 

Kingbury et al. (DNN-HMM sMBR HF)  (Kingsbury, Sainath, 

Soltau, Watson, & Heights, 2012) 

13.3 n/a n/a 

Sainath et al. (CNN-HMM)  (Sainath, et al., 2013) 11.5 n/a n/a 

Soltau et al. (MLP/CNN+I-Vector)  (Watson, Heights, Soltau, 

Saon, & Sainath, 2023) 

10.4 n/a n/a 

Seep Speech SWB 20.0 31.8 25.9 

Deep Speech SWB + FSH 12.6 19.3 16.0 
 

 

3.5.3.2 Second experiment: Noisy speech 

The second set of experiments involved testing the performance of the proposed speech 

recognition models in noisy environments. They used 100 noisy and 100 noise-free recordings 

from 10 speakers and created the noise using various environments like a crowded cafeteria, a 
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restaurant, and driving in the rain. They trained their model using more than 7000 hours of data 

and used an ensemble of 6 networks. They compared their model to other commercial speech 

systems and found that their system performs better in noisy environments. They also trained 

two RNNs, one on raw data and the other with added noise and found that the one trained with 

noise performed better in noisy environments. 

The results in Table 3 indicate that the Deep Speech model outperformed the commercial 

systems in noisy environments, and the noise-trained model achieved a 6.56% absolute on the 

clean recordings, 19.06% on the Noisy data, and 11.85% on the combined version. 

 

Table 3. Results (%WER) for 5 systems. 

System Clean (94) Noisy (82) Combined (176) 

Apple Dictation 14.24 43.76 26.73 

Bing Speech 11.73 36.12 22.05 

Google API 6.64 30.47  16.72 

wit.ai 7.94 35.06 19.41 

Deep Speech 6.56 19.06 11.85 
 

 

3.6 Transformers 

3.6.1 Introduction  

Transformers have emerged as a dominant force in the realms of audio and NLP tasks. With their 

novel architecture and self-attention mechanisms, Transformers have achieved state-of-the-art 

performance, surpassing previous approaches in understanding and generating human language. 

In NLP, they excel in machine translation, sentiment analysis, question answering, and text 

summarization. In speech tasks, they enabled more accurate transcriptions and natural-sounding 

speech generation. Transformers represent a remarkable advancement that has reshaped the 

landscape of language-based AI applications. 
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In the context of ASR, Transformers have been proven to outperform techniques using RNNs 

such as RNN-T or LSTM cells due to their parallelization capabilities  (Zeyer, Bahar, Irie, 

Schluter, & Ney, 2019; Vaswani, et al., 2017).  

3.6.2 Components 

3.6.2.1 Semantic encoding 

Semantic encoding constitutes a fundamental step in NLP, serving to enhance machines' ability 

to comprehend the significance of textual data. It involves transforming natural language text 

into a numerical representation that captures the context and semantics of the text. 

The Transformer architecture places considerable importance on semantic encoding, which 

serves as a critical step in transforming the input sequence into a series of compact and dense 

vector representations. These representations encapsulate the significance and contextual 

information of each token, facilitating the model's ability to comprehend the interdependence 

between different components of the input sequence. Figure 4 demonstrates how the semantic 

encoding step in the Transformer architecture effectively preserves the semantic relationships 

within the input text. 

 

 
Figure 4. Sample semantic relationships 

3.6.2.2 Positional encoding 

Positional encoding is important in the Transformer architecture for NLP. It helps the model 

understand the order of input tokens in a sequence which is important for understanding the 

meaning of the text. Positional encoding assigns a unique vector to each token that represents its 

position in the sequence.  
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The Transformer's positional encoding that the designers proposed is to use a periodically 

varying function based on sine and cosine here are the formulas: 

Sine-cosine positional encoding for the transformer model: 

 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) , 𝑓𝑜𝑟 𝑖 = 0,  1,  2, … ,

1

2
𝑑𝑚𝑜𝑑𝑒𝑙 − 1 

 

(6) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) , 𝑓𝑜𝑟 𝑖 = 0,  1,  2, … ,

1

2
𝑑𝑚𝑜𝑑𝑒𝑙 − 1 

 

(7) 

where ‘𝑝𝑜𝑠 ‘ is the position (time-step) in the sequence of input words, ‘𝑖 ‘ is the position 

along the embedding vector dimension and ‘𝑑𝑚𝑜𝑑𝑒𝑙‘represents the dimension of the 

embedding vectors. 

 

The size of the positional encoding vector is identical to that of the input embedding vector, and 

the former is added to the latter to obtain the final input representation. The incorporation of 

positional encoding into the Transformer architecture is instrumental in enabling the model to 

differentiate between tokens that may possess identical representations but occupy different 

positions within a sequence. Consequently, this feature plays a pivotal role in facilitating the 

Transformer's ability to comprehend the sequential order of input tokens, thereby allowing for 

the generation of highly accurate output sequences. 

3.6.2.3 Self-attention mechanism 

The self-attention mechanism is one of the key innovations of the Transformer architecture, 

particularly in the context of NLP and audio tasks. This mechanism enables the models to 

capture long-range dependencies between tokens in the input and output sequences more 

effectively than traditional models that rely on RNNs or CNNs. 

Figure 5 shows the three distinct types of attention mechanisms that are used in the Transformer 

to improve its performance: 

1. Encoder-Decoder Attention: Attention between the input sequence and the output 

sequence. 

2. Self-attention in the input sequence: Attention between all the words in the input 

sequence. 

3. Self-attention in the output sequence: The purpose of the masking in the self-attention 

mechanism of the decoder is to ensure that each token in the output sequence attends only 
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to the previously generated tokens, and not to any future tokens. This prevents the model 

from "cheating" by looking ahead at tokens that it has not generated yet. This is done by 

masking the words that occur after it for each step. So, for step 1, only the first word of 

the output sequence is NOT masked, for step 2, the first two words are NOT masked and 

so on. 

 

 
Figure 5. Attention mechanisms in Transformer 

The self-attention mechanism involves computing a weighted average of the input vectors, with 

emphasis placed on the most crucial vectors. 

Weighted vector aggregation: Self-attention mechanism: 

 

𝑧𝑖  = ∑ 𝑤𝑖𝑘
𝑛
𝑘=0 𝑥𝑘    

 

(7) 

where ‘𝑘 ’ indexes over the complete sequence of input vectors, ‘𝑛 ‘ is the number of input 

vectors and 𝑤𝑖𝑘 is the attention weight derived from input vectors computed as follows:  

 

Attention weights computation: 
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𝑤𝑖𝑘 =  𝑠𝑜𝑓𝑡 max(𝑥𝑖
𝑇𝑥𝑘) 

 

(8) 

where ‘𝑥𝑖’ is at the same position as ‘𝑧𝑖’, ‘𝑇 ’ is the transpose operation and 𝑠𝑜𝑓𝑡 max(⋅) is 

used to map the values between 0 and 1 

In the basic self-attention operation, each input vector ‘𝑥𝑖’ is used in three distinct roles. 

Multifaceted roles: Self-attention output equation with three roles for input vectors: 

𝑧𝑖 = ∑ 𝑠𝑜𝑓𝑡

 𝑗
 

max(𝑥𝑖
𝑇𝑥𝑗) 𝑥𝑗  

 

(9) 

 These roles are called query, key, and value. 

 The self-attention mechanism uses learnable parameters to derive three different vectors 

for the roles of the query, key, and value. These vectors are obtained through a linear 

transformation of the original input vectors. 

Learnable Transformations: Query, Key, and Value Vectors in Self-Attention Mechanism. 

 

𝑞𝑖 = 𝑊𝑞𝑥𝑖, 

𝑘𝑖 = 𝑊𝑘𝑥𝑖, 

𝑣𝑖 = 𝑊𝑣𝑥𝑖, 

 

(10) 

where ‘𝑊𝑞’, ‘𝑊𝑘’ and ‘𝑊𝑣’ are learnable weight matrices. 

 

This feature enables the model to focus on the most salient aspects of the input sequence during 

both encoding and decoding, thereby enhancing its ability to comprehend the intricate 

relationships between various segments of the sequence. 

3.6.3 Multi-head attention 

Multi-head attention constitutes a critical component within the Transformer architecture, 

playing a pivotal role in enabling the model to concurrently attend to multiple segments of the 

input sequence. This improves the model's ability to capture more complex patterns and 

relationships between words, which can be helpful in both NLP and audio tasks. After processing 

each constituent part of the input sequence, the model amalgamates all the resulting information 

by aggregating the outputs from each component, as illustrated in Figure 6. The model 
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subsequently utilizes mathematical techniques to optimize the aggregated data, enhancing its 

usefulness in generating highly accurate output sequences. This optimized data is then passed 

through a neural network, allowing the Transformer model to produce even more refined output 

sequences. 

 
Figure 6: Multi-head attention mechanism 
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3.6.4 Transformer architecture 

As we can see in Figure 7, the Transformer architecture is composed of an encoder and a 

decoder. 

 

 
Figure 7. Transformer architecture 

 

The Transformer architecture is a neural network model that has revolutionized the field of audio 

and NLP. It consists of an encoder and a decoder, which work together to process and generate 

sequences of text. In the next sections, we will delve deeper into the workings of the encoder and 

decoder components of the Transformer architecture and examine how they contribute to the 

overall success of the model in various audio and NLP tasks. 

3.6.4.1 Encoder 

The first step in the Transformer model is to convert the input sequence into a set of vector 

representations that encapsulate the semantic meaning of each word. These vectors are then 

augmented with positional encoding to indicate the position of each word in the sequence. In 

Figure 8, we observe that the vectors are subsequently processed through a multi-head attention 

layer, which generates attention scores for all pairs of positions in the sequence. This mechanism 

enables the model to focus on the most relevant aspects of the sequence. Finally, the output of 
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the self-attention sub-layer is passed through a feed-forward neural network to capture intricate 

relationships between different parts of the input sequence. 

 

 
Figure 8. The encoder of transformer 

 

The Encoder is designed to be highly parallelizable, allowing it to process input sequences 

efficiently and in parallel. The outputs of the Encoder are a set of dense vector representations. 

These vector representations are then fed into the Decoder component of the Transformer 

architecture. 
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3.6.4.2 Decoder 

In the decoding stage of the Transformer model, the output sequence generated thus far is 

utilized as the input to the decoder. The embedding of each output token is augmented with 

positional encoding, which is shown in Figure 9, and these resulting vectors are then passed 

through the first layer of the decoder. In each subsequent layer, the masked multi-head attention 

mechanism computes attention scores between every pair of positions in the output sequence up 

to the current time step, ensuring that the model only attends to previously generated tokens.  

 

 
Figure 9. The decoder of transformer 

 

This mechanism boosts the model's ability to generate precise output sequences by leveraging 

previously generated tokens to guide subsequent predictions. The masked self-attention sub-

layer's outputs are then passed through a multi-head attention mechanism that attends to the 

encoded input sequence produced by the Encoder. This mechanism calculates attention scores 

between every position in the output sequence and every position in the encoded input sequence, 

allowing the model to focus on the relevant portions of the encoded input sequence at each step 

of the decoding process. Finally, the outputs of the multi-head attention sub-layer are passed 

through a feed-forward neural network, which employs a non-linear transformation to enable the 

model to capture more intricate relationships between the input and output sequences. 
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The Decoder is also designed to be highly parallelizable, allowing it to generate the output 

sequence efficiently and in parallel. The final output of the Decoder is the next predicted token. 

3.6.5 Use cases 

Transformers have been widely used for ASR in recent years. For example, Mohamed et. al. 

(2019) present a new approach for ASR that combines Transformers and CNNs to capture both 

local and global contextual information from speech data. The proposed model, Convolutional 

Context Transformer, uses CNNs to extract local features and Transformers to model global 

context dependencies. The model is trained on the LibriSpeech dataset and evaluated on the test-

clean and test-other subsets, achieving state-of-the-art results.  

In the context of Transformers, there exist two main categories depending on how the model 

generates an output. Autoregressive models generate output one element at a time, conditioned 

on previously generated elements, while non-autoregressive models generate output all at once, 

without considering any previously generated elements. In the context of ASR, autoregressive 

models have been widely used and achieve state-of-the-art results, but they can be 

computationally expensive and slow due to their sequential nature. Non-autoregressive models, 

on the other hand, are faster and can generate output in parallel, but they often sacrifice some 

accuracy for speed. Song et al. proposed an ASR model that combines a non-autoregressive 

Transformer encoder with a CTC-enhanced decoder input. The model was trained jointly with a 

hybrid CTC/attention-based loss function, which allows for faster training and better 

convergence than previous non-autoregressive models. Moreover, the proposed approach 

achieved a 50 times faster decoding speed compared to a strong autoregressive model  (Song, et 

al., 2021). 

Although it was shown that transformer-based models are a strong alternative to RNN end-to-

end models, these approaches require the entire input sequence to compute the self-attention, 

making them computationally expensive. To mitigate this obstacle, another study proposes a new 

approach to enhance the performance of Transformer-based ASR models by introducing a new 

block-level processing method called Contextual Block Processing (CBP). The proposed method 

aims to incorporate contextual information of input blocks into the Transformer encoder and 

decoder layers to improve the model's ability to capture long-term dependencies  (Tsunoo, 

Kashiwagi, Kumakura, & Watanabe, 2019). 
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3.6.6 Conclusion 

In conclusion, Transformers have had a significant impact on audio and NLP fields, and their 

innovative architecture has been successfully integrated into various algorithms for a range of 

tasks such as sentiment analysis, machine translation, and speech-to-text. With their ability to 

capture long-range dependencies, attend to different parts of the input sequence simultaneously, 

and effectively encode positional information, Transformers have shown great promise in 

advancing audio and NLP and improving the accuracy and performance of language-based 

applications. Transformers are able to understand complex relationships between different tokens 

of input and output sequences thanks to the self-attention mechanism and the multi-head 

attention mechanism. Additionally, the highly parallelizable Transformers architecture has 

shown a faster and more efficient way to produce predictions compared to traditional methods. 

3.6.7 Key takeaways 

4. Transformers have become the de facto standard for audio and NLP tasks.  

5. Semantic encoding, positional encoding, self-attention mechanism, and multi-head 

attention mechanism are the key components of the Transformers architecture. 

6. The ability of Transformers to learn contextual representations of words has significantly 

improved the performance of language models. 

7. Transformers have proven to be highly parallelizable, enabling the generation of 

predictions in a faster and more efficient way. 

8. The pre-trained language models based on Transformers, such as BERT  (Kenton, 

Kristina, & Devlin, 1953) and GPT  (Redford & Salimans, Redford & Salimans, n.d.), 

have achieved state-of-the-art performance on various natural language processing tasks. 

9. The Whisper model  (Radford, et al., 2022), a pre-trained audio model inspired by 

Transformers, has demonstrated remarkable performance in a wide range of audio 

processing tasks. 

10. Transformers have enabled significant progress in the development of conversational 

agents and chatbots. 
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A MITRE STT reports summarized  
 

Table A- 1. Voice communications error detection & notification: an initial feasibility 

assessment (2005) 

Summary Pros Cons 

• The MITRE Corporation conducted 

a feasibility assessment of a voice 

communications error detection 

system in September 2005. 

• The project aimed to improve 

aviation safety by reducing 

operational errors and deviations 

caused by controller-pilot voice 

communications errors. 

• Automated Speech Recognition 

(ASR) technology was used to 

detect potential errors by looking 

for mismatches between controller 

clearances and the associated pilot 

readback. 

• Two evaluations were performed to 

determine if the speech recognition 

accuracy rates for operational ATC 

voice communications were similar 

to those observed on the CTI 

project for ATC trainees in a 

laboratory environment. 

• Results indicated that tuning the 

ASR dictionary for ATC specific 

pronunciation and Digital Signal 

Processing to slow down the audio 

speed improved recognition 

accuracy scores. 

• Automated Speech 

Recognition (ASR) 

technology can be used 

to detect voice 

communications errors 

in aviation safety 

• ASR technology can 

recognize 7110.65 

phraseology and 

colloquialisms 

• Digital Signal 

Processing (DSP) and 

ASR tuning techniques 

can improve 

recognition accuracy 

• Accuracy scores are 

highest for certain key 

information, such as 

the flight level digits 

• Initial results indicated 

low speech recognition 

accuracy confidence 

scores 

• Accuracy scores were 

lower for filler words 

• Further research is 

needed to determine 

what recognition 

accuracy is needed to 

support Concept of 

Operations 
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Table A- 2. Issues to be addressed during full analysis and performance measurement of a voice 

communications error detection system (2005) 

Summary Pros 

• Developing a voice communications error 

detection and notification system to improve 

aviation safety by reducing Operational Errors 

and Operational Deviations caused by 

controller-pilot voice communications errors. 

• Investigating the feasibility of using COTS 

Automated Speech Recognition (ASR) 

technology to recognize controller speech. 

• Adapting the ASR system to controller and 

pilot acoustic models. 

• Developing recognition grammar and intent 

rules to determine the intent of the issued ATC 

clearance. 

• Calculating expected correct and incorrect 

pilot readback for a control instruction. 

• Analyzing the connection between speech 

recognition capability and categories of voice 

communications errors. 

• Developing capability for recognition of pilot 

readbacks. 

• Calculating missed alarm/false alarm curves 

for readback-hearback error detection. 

• Can improve aviation safety by reducing 

Operational Errors & Operational 

Deviations caused by controller-pilot voice 

communications errors. 

• Can identify the intent of the issued ATC 

clearance. 

• Can determine if the Pilot readback is 

consistent with the intent of the issued ATC 

clearance. 

• Can determine whether confidence in match 

or mismatch result is sufficient to notify 

ATC controller/system. 

• Can use recognition grammar & intent rules 

developed by CAASD for Controller 

Training Initiative. 

• Can use vendor provided tools & CAASD 

developed tools with controller voice 

recordings to collect missed recognition & 

false recognition rates. 

• Can use pilot voice tapes. 
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Table A- 3. Voice communications error detection assessment of speech recognition system 

adaptation (2006) 

Summary Pros Cons 

• The text is an assessment of 

Voice Communications Error 

Detection and Notification for 

an aviation safety output. 

• OE Analysis results found that 

voice communication errors 

represented approximately 

20% of errors, with 50% 

involving single digit or letter 

errors and 25-33% involving 

transposed digits or letters. 

• To focus the effort, the 

detection system was targeted 

at altitude errors, callsign 

errors and lack of pilot 

response. 

• Phonetic and acoustic model 

adaptations were developed to 

modify the ASR speech 

models for ATC phraseology. 

• Evaluations showed a 10% 

improvement 

• Both Phonetic & Acoustic 

Model Adaptation can 

improve ASR recognition 

rates. 

• Analysis of enroute OEs 

identified the most 

common voice 

communications problems. 

• Evaluation environment 

includes Automated 

Speech Recognition 

Systems, Speech 

Recognition Grammar, and 

ATC Speech Database. 

• COTS ASR systems 

may not have 

sufficiently high 

recognition rates to 

support a general 

purpose ATC voice 

communications error 

detection system. 

• Not suitable for direct 

comparison between 

phonetic and acoustic 

model adaptation 

studies.  

• Evaluations only on 

the controller side of 

the dialogue. 
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Table A- 4. Late or missing landing clearance detection and notification system description 

(2012) 

Summary 

• MITRE CAASD designed and implemented a Late or Missing Landing Clearance Detection 

and Notification System prototype. 

• The prototype utilizes automatic speech recognition, data fusion, and other technologies to 

make it a viable and practical capability in the busy tower cab environment. 

• This document captures and describes the key elements of the prototype and its demonstration 

in the lab, including design considerations, software architecture, algorithms, hardware 

components, site specific parameters, data and configurations, and simulation environment. 

• The system performed well in the simulated environment and is ready for field customization 

and site-specific enhancements. 

• Additional airport/tower specific adaptations are still necessary to optimize the system for 

controller vocabulary, pronunciation, and phraseology and voice switch audio characteristics 

as well as airport automation systems and runway layout. 
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Table A- 5. Voice data (2014) 

Summary Pros Cons 

• MITRE Corporation developed 

a Flight Analysis System 

(FAS) capability to enable 

researchers to access recorded 

aviation data.  

• It evolved the capability to 

merge surveillance data from 

various sources with other 

aviation data sources to create 

a Flight Story.  

• Pilot controller voice 

communications are included 

to provide tactical pilot and 

controller intent information.  

• A voice processing pipeline of 

nine steps has been developed 

to incorporate voice data into 

the FAS.  

• The steps were audio 

filtering/sampling/transcoding, 

audio segmentation, dynamic 

context retrieval, dynamic 

callsign grammar generation, 

automatic speech recognition 

for callsigns, automatic speech 

recognition for full text 

transcription, extraction of 

information from text, fusion 

with Threaded Tracks, and 

encoding for storage 

• Can provide researchers with 

easy access to recorded aviation 

data. 

• Accessibility of voice 

communications data on a large 

scale. 

• Provides information critical to 

understanding of 

communication related errors. 

• Automatically generates files 

that can be loaded into the 

Flight Analysis System (FAS).    

• Utilizes automatic speech 

recognition technology. 

• Includes dynamic context 

retrieval, dynamic callsign 

grammar generation and 

extraction of information from 

text. 

• Limitation of not 

including military 

and other sensitive 

flights. 

• Difficulty in 

processing lower-

fidelity audio. 

• Inability to identify 

Flight Story 

associated with 

individual 

transmissions. 
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Table A- 6. Methods for expanding speech recognition applications for early resolution of 

surface safety events (2016) 

Summary Pros Cons 

• Five potential speech recognition 

applications were presented, 

with RCD being the most 

complex and comprehensive. 

• Analysis results confirm that 

context information is valuable 

for improving speech 

recognition performance. 

• Advanced tuning techniques 

yielded significant speech 

recognition performance 

improvement.   

• Initial findings on the 

development and performance of 

a speech recognition system for 

GC audio are promising. 

• The FAA must decide on the 

scope of the vision they want to 

pursue to plan its investment. 

• Speech recognition 

technology has potential to 

have a significant positive 

effect on the detection and 

prevention of runway 

incursions. 

• Context information is 

valuable for improving speech 

recognition performance. 

• Advanced tuning techniques 

yield significant speech 

recognition performance 

improvement.    

• Initial findings on the 

development and performance 

of a speech recognition 

system for GC audio are 

promising. 

• Discussions around the 

potential value of speech 

recognition technology were 

generally positive. 

• Speech recognition 

performance may not 

currently be sufficient 

to enable every 

application.   

• Development of 

applications for surface 

safety can be directly 

leveraged to develop 

applications for other 

purposes and in other 

domains, requiring the 

FAA to decide on the 

scope of the vision they 

want to pursue. 
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Table A- 7. Speech recognition for real-time surface safety applications (2018) 

Summary Pros Cons 

• Demonstrated that the use of a 

DNN-based speech recognition 

system can be both more 

accurate and faster than the 

previous iteration. 

• Tested the extensibility of the 

DNN-based speech recognition 

system to new facilities, showing 

that using some facility-specific 

data is helpful but not necessary 

to achieve accuracy. 

• Concluded that ADSB appears 

technically feasible to be used as 

a source of surface surveillance 

that could be paired with speech 

information to enable intent-

based surface safety alerting 

concepts. 

• Concluded that existing radar 

surveillance can be used to 

predict the surface on which an 

arrival will land, which can then 

be compared to speech 

information to identify and alert 

controllers to potential wrong 

surface landings. 

• Described how speech 

recognition can enable a smart 

memory aid device, and 

recommended the FAA consider 

it as a technology that could 

enhance the usefulness of RIDs. 

• Demonstrated that the use of a 

DNN-based speech 

recognition system can be 

both more accurate and faster 

than the previous iteration of 

the realtime speech 

recognition platform. 

• Provided datadriven backing 

to a requirements 

development process if the 

FAA decides to acquire a 

realtime speech recognition 

capability. 

• Broadened the scope of 

applications that speech can 

enable 

• Investigated whether ADSB 

appears technically feasible to 

be used as a source of surface 

surveillance. 

• Investigated whether existing 

radar surveillance can be used 

to predict the surface on 

which an arrival will land. 

• Described how speech 

recognition can enable a 

smart memory aid device. 

• Enabled a better 

understanding of the 

technology and its use cases. 

• Progress made toward 

realtime speech recognition 

capabilities is directly 

applicable to using voice data 

to inform postoperations 

analysis. 

 

• More research and 

testing is needed to 

fully demonstrate 

feasibility of using 

existing radar 

surveillance to 

predict the surface 

on which an arrival 

will land. 

• No investment 

decision milestones 

currently planned 

for the acquisition 

of realtime speech 

recognition 

capabilities. 
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Table A- 8. Air traffic control speech recognition (2021) 

Summary Pros Cons 

• The MITRE Corporation's Center 

for Advanced Aviation System 

Development (MITRE CAASD) 

has been developing and using 

voice data processing capabilities 

to analyze ATC radio/voice 

communications. 

• These analyses provide new 

insights to help the Federal 

Aviation Administration (FAA) 

make safety and efficiency 

improvements. 

• ATC voice communications have 

a unique set of characteristics that 

influence technical approaches to 

voice processing, such as limited 

frequency bandwidth, fast speech, 

and domain-specific terminology. 

• MITRE CAASD has access to 

FAA voice recordings across 130 

FAA ATC facilities, covering 

most ATC voice transmissions in 

the NAS. 

• Enhancements are needed to 

improve accuracy and add new 

features to the voice data 

processing capability to make it 

useful for new aviation 

applications and more useful for 

existing applications. 

•  

• Provides new insights to 

help the FAA make safety 

and efficiency 

improvements. 

• Uses natural language 

processing technologies 

such as automatic speech 

recognition. 

• Domain-specific 

characteristics of ATC 

speech signal are taken 

into account. 

• Voice/speech capabilities 

are designed to 

accommodate the unique 

characteristics of ATC 

voice communications. 

• Capabilities are designed 

to operate on a large scale, 

handling the majority of 

voice communications in 

the NAS 

• Continues to mature and 

enhance the processing 

capabilities to enable 

more accurate voice 

analysis. 

• Audio of the U/VHF 

AM radio 

communication is 

noisy, with limited 

frequency 

bandwidth. 

• Pronunciation 

variations, with 

challenges such as 

fast speech, 

coarticulation, and 

incomplete 

articulation 

• ATC vocabulary is 

limited compared to 

general English 

speech. 

• FAA phraseology is 

standardized, but 

controllers and pilots 

sometimes use local 

colloquialisms or 

otherwise vary from 

standard 

phraseology. 

• Identifying speech 

associated with 

safety risks can be 

especially tricky 

because these risky 

situations are rare in 

modern ATC. 
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